
Fizikai analógia: rugó-blokk rendszerek és MI
Az emberi képzelet számára könnyen értelmezhetőek olyan mindennapi tárgyak, mint a hajtogatható mérővonalzó vagy a ruhafogas. A kutatók rájöttek, hogy ezek a hétköznapi eszközök szinte pontosan leírják, ahogyan a mély neurális hálózatok egyre jobban elkülönítik az adatokat a rétegeikben. A rugó feszülése megfeleltethető annak, mennyire egyszerűsíti, választja szét egy réteg az adatokat, míg a súrlódás a hálózat nelinearitását reprezentálja. Ha ehhez még egy kis „zajt” is hozzáadunk – például edzési zaj vagy vibráció –, az még tovább árnyalja a tanulási folyamatot.
Ráadásul, amint nő a rendszerben a nelinearitás, a felsőbb (mélyebb) rétegek jóval nagyobb változást, szeparációt hoznak létre az adatokon, míg az alsóbbak kevésbé. Mindazonáltal, ha zaj kerül a rendszerbe, vagy a rugóblokkok remegnek, ezek az eltérések kiegyenlítődnek, és az adat-szeparáció kiegyenlítettebb lesz minden rétegben. Ebből következően a megfelelő súrlódás, rugóerő és zaj kombinációja optimalizálhatja a tanulási folyamatot, így a neurális hálózatok gyorsabban és pontosabban tanulnak.
Miért különleges ez az elmélet?
Nem elhanyagolható, hogy a legtöbb eddigi kutatás túlzottan leegyszerűsített modellekkel dolgozott, amelyek nem tudták együtt vizsgálni a valóban fontos tényezőket, mint a mélység, a nelinearitás, a zaj, a tanulási ráta vagy az adatok normalizálása. A mostani megközelítés – bár nem első elvekből indul ki – mégis képes a fenti összetevők együttes hatását vizsgálni, és valódi, összetett DNN-ekre is alkalmazható.
A rugó-blokk modell segítségével a kutatók ki tudták számítani a tanulás során fellépő adat-szeparáció görbéjét is, illetve könnyen meg lehet jósolni, hogy ez a görbe mikor mutat túltanulást vagy redundanciát egyes rétegekben. Ez különösen fontos, mivel egy ilyen görbe olcsón számolható, mégis megbízhatóan előrejelezheti, hogyan fog egy hálózat teljesíteni új, eddig nem látott adatokon. Potenciálisan akár a nagy nyelvi modellek (LLM-ek) gyorsabb és hatékonyabb tanítását is lehetővé teszi – és erre már nagy szükség van, hiszen egy modern, transformer-alapú MI modell tanítása dollármilliókba (több milliárd forintba) kerülhet.
Hétköznapi tárgyak, bonyolult MI rendszerek
A kutatók szinte játékos kedvvel vetették bele magukat a háztartási tárgyak tanulmányozásába: képeket és videókat cseréltek hajtogatható vonalzókról, kitámasztható edényalátétekről, sőt még azt is lemodellezték, hogy egyes világhíres MI hálózatok (például a Maradék Háló – ResNet) vajon melyik eszközzel írhatók le legjobban. Így született meg az az ötlet, hogy a rugó-blokk lánc nem csupán földrengések vagy anyagdeformációk leírására, hanem MI-alapú tanulás modellezésére is kiváló lehet.
Ahogy egy rugó-blokk láncban a rugók húzóereje fokozatosan kiegyenlítődik minden szakaszon, úgy egy jól tanított DNN is képes minden rétegében közel azonos mértékben szétválasztani az adatokat, feltéve, hogy a megfelelő paramétereket állítjuk be.
A jövő: diagnosztika, optimalizáció
A rugó-blokk modell nem csak elméleti bravúr. Könnyen elképzelhető, hogy hamarosan diagnosztikai eszközök készülnek majd a segítségével MI-fejlesztők számára. Ugyanúgy, ahogy a szerkezetmechanikában a feszültségtérképek kijelölik a gyenge pontokat, a neurális hálózatok rétegeiben is felismerhetővé válnak a túlterhelt vagy kihasználatlan régiók. Ez kulcsfontosságú például a túltanulás elkerülésében vagy éppen a felesleges, redundáns rétegek kiszűrésében, ezzel időt, energiát és pénzt is spórolva.
Nem hagyható figyelmen kívül, hogy az embereknek ösztönösen van elképzelésük arról, hogyan működnek a rugók és blokkok – ellentétben a milliárd paraméteres MI modellekkel. Ebből következően a jól érthető fizikai analógiák alkalmazása nem csupán szemléletesebbé teszi az MI-kutatást, hanem konkrét, a gyakorlatban is jól használható eredményekhez vezet.