
A természetből ellesett trükkök
A gépi anyagcsere elképzelése több korábbi MI-s és robotikai koncepciót ötvöz. Az egyik kiindulópont a mesterséges élet, ahol algoritmusokkal szimulálják az élőlények fejlődését. Emellett ott van a moduláris robotika: olyan szerkezetek, amelyek egyszerű alapegységekből, modulokból újra és újra átalakulhatnak. Ezen elveken felbuzdulva Wyder kutatócsoportja olyan robotmodult tervezett, amelynek szerepe nagyjából megfelel egy aminosavnak az élő szervezetekben.
A Truss Link nevű egység egy 16 cm hosszú rúd, amelyben akkumulátor, vezérlő elektronika és szervomotor is található. Tud tágulni, összehúzódni, sőt, akár „mászni” is, végén erős mágnesek segítik a csatlakozást. Így képesek könnyű, rácsszerű szerkezetekké kapcsolódni. Az elképzelés az volt, hogy több ilyen Truss Linket egy zárt térbe helyezve, azok spontán nekimennek egymásnak, és bonyolultabb struktúrákat alkotnak – akárcsak az aminosavak, amikor formálni kezdték a földi életet közel 4 milliárd éve.
Növekvő robotok: összeszerelés és fejlődés
Az első kísérletek során a laboratóriumban kis tereptárgyakat, akadályokat helyeztek el, és a kutatók irányították a Truss Linkeket, hogy különböző alakzatokat hozzanak létre. Például három rúd mágneses találkozása csillagformát, míg más elrendezés háromszöget, gyémántra emlékeztető figurát vagy éppen egy háromszög alapú piramist eredményezett. Minél összetettebbé vált a szerkezet, annál ügyesebb lett: egyetlen Truss Link csak előre tudott haladni, egy háromszög már tudott kanyarodni, a bonyolultabb, „gyémánt-farkas” pedig akár kisebb akadályokon is átkelt, míg a tetraéder képes volt falakon is átjutni.
Különösen fontos kiemelni, hogy a fejlettebb formákkal a robotok már egymáson is segíteni tudtak: például egy plusz Truss Linket „sétapálcaként” használó tetraéder más egységeket is hozzásegíthetett a bonyolultabb szerkezetek kialakításához. Noha mindehhez még mindig emberi irányítás kellett, felmerült a kérdés, vajon működhetnének-e maguktól is ezek az összeszerelési folyamatok.
Káoszból rend: öntanuló összekapcsolódás
A kutatók számítógépes szimulációban azt vizsgálták, hogy hat Truss Link, ha véletlenszerűen mozog, milyen arányban talál egymásra, és milyen alakzatokat alkot. 2 000, egyenként 20 perces próbálkozásból a modulok 64%-ban háromágú csillagot, 8,4%-ban kettő háromszögből álló szerkezetet, valamint 45%-ban gyémánt alakú formát hoztak létre (egyes konfigurációk átfedésben jelentek meg, ezért haladják meg az arányok összesen a 100%-ot). A modulok képesek voltak sérült vagy kiesett egységeket is pótolni – önjavító képességeket mutatva.
De beszélhetünk-e itt valódi anyagcseréről? Bár ezek a robotok képesek magukat bővíteni, újraszervezni és időlegesen fenntartani, klasszikus értelemben még nem bontanak le anyagokat, hogy új modulokat alkossanak. Jelenleg csak előre gyártott Truss Linket tudnak „felfalni”, nem alakítanak át például műanyaghulladékot vagy régi lítium-ion akkumulátorokat új egységekké. Itt sokkal inkább a definíció tágítása, semmint a tényleges gépi anyagcsere az, ami újdonságot jelent.
A robotok célja: túlélés vagy hódítás?
A legtöbb élőlény fejlődése a túlélés szolgálatában áll. Az MI-ökoszisztémán belül is kulcsfontosságú lehet, hogy a robotokat önfenntartó rendszerré fejlesszük. Wyder mégsem szeretné, ha a robotvilág vadászmezővé válna, ahol egymást „eszik”, hogy egyre hatékonyabbak legyenek. Inkább arról álmodik, hogy adjunk nekik világos célt. Ha például egy holdbázist kell építeniük, akkor a túlélés lesz az első számú prioritás – és ennek érdekében előbb sok apró robotkutató járja be a vidéket, majd egy nagyobb szerkezetté, például egy daruvá állnak össze. Ekkor az új, nagy építmény „felfalja”, azaz magába integrálja a kisebb, önálló robotokat a hatékonyság érdekében.
Ebből kifolyólag egy ilyen önszerveződő robotrendszer várhatóan jobban alkalmazkodhat a váratlan helyzetekhez, mint maga az élet. Míg egy élő szervezet soha nem képes hirtelen új testrészt növeszteni, egy robot, ha elég időt és alapanyagot kap, ezt valóban megvalósíthatja.
Mi jöhet még?
A robotika ezen új ágához még hiányzik egy nagyobb változatosságot mutató modulrendszer. Wyder csapata jelenleg megegyező modulokat használt, de terveik között szerepel, hogy különféle szenzorokkal ellátott, speciális egységeket is integráljanak – hiszen a biológiai élet is közel 20 féle aminosavat alkalmaz. Amíg azonban a robotika nem találja meg az egyes egységek valódi „életcélját”, addig ezek a szerkezetek leginkább a laboratóriumokban bontakozhatnak ki, nem pedig a mindennapi világban.
Noha a mai moduláris robotok nem tekinthetők teljesen önfenntartónak, az irány, amelybe fejlődnek, teljesen átalakíthatja a jövő robotikáját – és talán az élet és gép közötti határokat is.