
Új generációs acélok és a MI-alapú részletes vizsgálatok
A klasszikus ferrites/martenzites (RAFM) acélcsaládba tartozó új ötvözetek, mint a Önthető Nanoszerkezetű Ötvözet #9 (Castable Nanostructured Alloy #9, CNA9), élen járnak a fejlesztésekben. Ezek az acélok rengeteg nanoszintű titán-karbid részecskét tartalmaznak, amelyek magukban tartják a sugárzást, és a keletkező héliumot is csapdába ejtik, így megakadályozzák annak károsító hatását. Ez a technológia jelentős, hiszen drámaian növelheti az anyagok szilárdságát és élettartamát.
A University of Michigan kutatói által irányított, példaértékű kísérletsorozat azonban kimutatta, hogy ezek a titán-karbid csapadékok csak korlátozott ideig képesek bent tartani a héliumot. Az első időszakban ugyan jól működnek, de magas sugárzási terhelés (akár 100 elmozdulás/atom, azaz dpa) hatására teljesen feloldódnak az acélban. Ezt követően már nem kötik meg a héliumot, az ötvözet megduzzad, szerkezete meggyengülhet. Mindezek alapján egyértelmű, hogy jelenlegi formájában még nem áll készen a fúziós reaktorokban való alkalmazásra.
Kettős ionnyaláb: élethűbb tesztek az anyagtudományban
Áttörést jelentett, hogy a kutatók egyszerre két ionnyalábot – vassal sugárzó, roncsoló és héliummal bombázó – alkalmaztak egyidejűleg, vagyis sokkal pontosabban tudták szimulálni a fúzió belső viszonyait. Finomhangolni lehetett a sugárzás erősségét (1–100 dpa), a héliumtartalmat (10–25 atom/millió/dpa) és a hőmérsékletet (300–600 °C). Elektronmikroszkópos vizsgálatok kimutatták, hogy kb. 500 °C-on a titán-karbidok jól csapdázták a héliumot, de ami “kiszökött”, az apró buborékokban jelent meg az acélban, így a szerkezet 2%-kal kitágult a legmagasabb sugárzásnál.
A titán-karbid csapadékok növelték a stabilitást közepes hőmérsékleten (500–600 °C) és alacsonyabb sugárzásnál (15 dpa alatt), de 50–100 dpa feletti terhelésnél, függetlenül a hőmérséklettől, teljesen eltűntek. Mégis, az eredmények fontos iránymutatást adnak a jövő ötvözeteinek tervezéséhez: rámutatnak, hogy akár ezerszeresére is növelni kellene a titán-karbid mennyiségét a kívánt hatás eléréséhez, illetve jelentősen javítani kellene a csapadék stabilitását is.
Mi következik most a fúziós acél kutatásban?
A szakemberek szerint további MI-alapú modellezésekre és kísérletekre van szükség különböző hőmérsékleteken, még sűrűbb titán-karbid csapadékokkal, hogy valóban igazolható legyen a koncepció. Fontos az is, hogy a jelenlegi fúziós reaktor-előszobák eredményeit nem lehet egy az egyben átültetni a jövő tömeggyártására. Ezért nagy kérdés, mikor léphet át a laboratóriumi fejlesztésekből az ipari alkalmazásba ez a forradalmi, de egyelőre még tökéletlen fúziós acél.