Penrose szám: A bizonyíték Isten létére?

A tudományos világban valaha publikált, kitalált vagy mért számok közül a Penrose-szám az egyik legnagyobb. Értéke minden képzeletet felülmúl, és igazi jelentősége éppen abban áll, hogy szinte értelmetlenül és felfoghatatlanul nagy. Annyira nagy, hogy nemcsak a működő fizikai modellek gyengeségére mutat rá, hanem a mindenség kialakulásával kapcsolatos tudatos tervezés, vagyis egy/a teremtő isten létezését is igazolhatja.

Sir Roger Penrose brit matematikus és elméleti fizikus, aki a fekete lyukak szingularitásának és az általános relativitáselmélet új matematikai alapjainak feltárásáért kapott Nobel-díjat, az 1970-es években sokkoló, a tudományos világot megosztó tézist közölt. A Penrose-számot azért vezette be, hogy szemléltesse a világegyetem kezdeti alacsony entrópiájú állapotának valószínűtlenségét. A Penrose-szám értéke pedig, és most vegyünk egy nagy levegőt: 10^10^123, tíz a tizediken a százhuszonharmadikon vagy tíz a tizedik hatványon a százhuszonharmadik hatványon.

Nem rossz, ugye? A fizikában és matematikában nem ritkák az inkább elméleti jelentőségű, extrém nagy számok, mint például a googol, 10 a századik hatványon, vagy a Shannon-szám, ami egy becslés arra, hogy hány lehetséges sakkjátszma létezhet, amely körülbelül 10 a százhuszadik hatványon, vagy az Avogadro-szám a kémia és a fizika egyik alapvető állandója, amely megadja, hány részecske (atom vagy molekula) található egy mólnyi anyagban, ez kb. 6 x 10 a huszonharmadikon. Mindezek azonban a fasorban sincsenek a Penrose-számhoz képest.

A teljes képhez hozzátartozik, hogy vannak még ennél is nagyobb elképzelt számok, de a Penrose-szám különlegessége az, hogy nem csupán egy gondolatkísérlet vagy kombinatorikai számítás eredménye, hanem a világegyetem kezdeti entrópiájára vonatkozó, valószínűségi becslés. Így nemcsak a nagysága miatt érdekes, hanem azért is, mert egy konkrét fizikai állapothoz kapcsolódik, amelynek megértése kulcsfontosságú lehet a kozmológia számára. Majdhogynem egy kézzelfogható valami megnevezésére szolgál, nem csupán a végtelenhez közelítő elképzelt fogalom. Járjuk ezt egy picit körül.

I. Mennyire nagy a Penrose-szám?

Nagyon. Tíz a tizediken a százhuszonharmadikon annyira nagy, hogy állítólag az Univerzumban nincs annyi atom, ahány 0-ra lenne szükségünk ennek a számnak a leírásához. Nem magának a számnak az elképzeléséhez, hanem a leírásához, a számalak nulláihoz. Ez nem ugyanaz, hiszen a 100 például két nulla, míg értéke száz, az egymillió csupán hat nulla értéke pedig egymillió, és ezután már hamar elszaladnak a dolgok. Tehát több nulla van a Penrose-számban, mint atom a világmindenségben. Ha le akarnánk valójában normális kézírással írni ezt a számot, több mint egy billió billió (sőt, szinte végtelen számú) univerzumra lenne szükségünk, hogy csak a számjegyeket megjelenítsük. Csak egybillió univerzumban ez a szám leírva nem férne el, még ha akármilyen picike számokkal írjuk is.

II. Mit mutat a Penrose-szám?

Ehhez szükséges két másik fogalom, a dimenzió nélküli számok és a kozmológiai állandók megismerése. Ezek egyikéből sincsen nagyon sok, bár különböző iskolák különböző számokkal dolgoznak, a legfontosabb kozmológiai állandók száma körülbelül 4–6, attól függően, hogy milyen részletesen szeretnénk felosztani őket. A lambda kozmológiai állandó például az univerzum gyorsuló tágulását írja le, a Hubble-állandó az univerzum jelenlegi tágulási sebességét adja meg, a Baryon-sűrűség az univerzum látható anyagának sűrűsége, és még néhány, az univerzum alapvető működéséhez szükséges állandók ezek.

A dimenzió nélküli számok kissé nehezebben emészthetőek, essünk gyorsan túl három példán: Finomszerkezeti állandó, az elektromágneses erősség relatív erejét adja meg, említhető még a gravitáció és elektromágneses erő relatív erőssége, és a proton–elektron tömegarány.
A dimenzió nélküli számok száma, amelyeket a természet alapvető fizikai állandóiként kezelünk, körülbelül 20 körül van. A dimenzió nélküli számok és a kozmológiai konstansok közötti különbség az, hogy hogyan ismerhetők meg. A dimenzió nélküli számok csak mérésekkel határozhatók meg. A kozmológiai konstansok ezzel szemben néhány esetben a mérések mellett elméleti becslésekkel is meghatározhatók.

Ez a két szám típus jellemzi a világmindenség működéséhez szükséges fizikát. Ezek a számok nagyon határozott értékek, amelyek pontosan olyan “beállítást” vettek fel, hogy az univerzum működhessen. Valójában éppen ez a bökkenő. Ezek az értékek olyan precízen beállítottak, hogy ha akár csak kis mértékben is eltérnének a jelenlegi értékeiktől, az univerzum szerkezete és fejlődése alapvetően más lenne, és nem biztos, hogy lehetővé tenné az élet megjelenését. Kis eltérés a jelen értékektől nagy valószínűséggel nem működő fizikai rendszert eredményezne. Vagy a gravitáció lenne túl erős, vagy az elektromágneses kölcsönhatás lenne túl gyenge, az anyag nem tudna nagyobb egységekké, egyáltalán molekulákká formálódni.

Ha a dimenzió nélküli számok vagy a kozmológiai konstansok mások lennének, semmi sem létezhetne. A big bang egy fiaskó lett volna. Az anyag nem kezd el sűrűsödni, nem alakulnak ki csillagok, nem indul el a fúziós folyamat, nincs hő, nincs semmi. Egy héliumgáz molekula nem jön létre, nemhogy az élet kialakulna.

A Penrose-szám egy becslés arra nézve, hogy mi az esélye annak, hogy ezek a fundamentális számok pont azok lettek, amik. Az esélyt arra nézve, hogy a végtelen sok lehetőség közül pontosan egy rendkívül különleges kombináció jött létre, és ezáltal a fizika törvénye és az univerzum működik. A Penrose-szám egy valószínűség-becslés, 1:10^10^123 esélyt fejez ki, ami annyira abszurd módon kis valószínűség, hogy gyakorlatilag a totális lehetetlenség definíciója is lehetne. A Penrose-számmal jelzett valószínűségű eseménynél gyakorlatilag bármi más esemény bekövetkezése sokkal valószínűbb.

III. Miért baj az, hogy ilyen kis eséllyel alakulhattak ki a fundamentális számok, hiszen végülis így alakultak, nem?

Bajnak nem baj, de nem tudjuk megmagyarázni, miért történt így. Penrose érvelésében lényegében arra mutat rá, hogy a világegyetem kezdeti állapotának beállítása rendkívüli precizitást követelt meg ahhoz, hogy a jelenlegi fizikai törvényszerűségek később érvényesülhessenek. Ez a specialitás olyan, mintha végtelen sok lehetőség közül pontosan egy rendkívül különleges kombináció jött volna létre — olyan szigorúan meghatározott paraméterekkel, amelyek nélkül nem lenne lehetséges a jelenlegi fizikai törvények működése. Vagyis a világegyetemnek nemcsak az összetétele, hanem a „dimenzió nélküli” számok (mint például a fizikai állandók értékei) is olyan pontosak, hogy ezek nélkül nem alakulhatott volna ki az a stabil, összetett rendszer, amelyben az élet és az intelligens megfigyelők is létezhetnek. Penrose érvelése szerint ez véletlenül nem alakulhatott így.


IV. Ez egy érv lenne a tudatos teremtés mellett? Valaki vagy valami megtervezte a világmindenséget, beállította a fizikát és a fundamentális számokat?

Érdekes lenne, ha egy Nobel-díjas tudós nyilvánosan elkötelezte volna magát ebben az irányban… de nem, nem ez a helyzet. Roger Penrose következtetései érdekesek és filozófiai szempontból is mélyek, de nem irányulnak kifejezetten a tudatos tervezés felé. Penrose sokkal inkább a jelenlegi kozmológiai modellek hiányosságaira és korlátaira világít rá, különösen arra, hogy egyik modell sem képes igazán megmagyarázni a világegyetem rendkívüli speciális kezdeti beállítódását, más szavakkal bizonyos szempont szerinti rendezettségét. Nem feltétlenül tudatos beállítást feltételez, de azt kimondja, az eddigi magyarázatok a mindenség keletkezésére valószínűleg tévesek.

V. Akkor mégsincs szó tudatos tervezésről, ez egy száraz matematikai esszé, minden más csak újságírói belemagyarázás? Clickbait?

Penrose nagyon is mély és sokszor provokatív gondolatokat fogalmazott meg, még ha ezek nem is mindig szigorúan kijelentett formában jelentek meg. Noha tudományos Nobel-díjas kutatóként óvatosnak kellett maradnia nyilvános megnyilvánulásaiban, gondolatai mögött egyértelműen több húzódik. Penrose sosem zárta ki a „mélyebb struktúra” lehetőségét, amely túlmutat azon, amit ma a fizikai törvényszerűségekből megérthetünk, és gyakran utalt arra, hogy a tudomány határait feszegető kérdésekről van szó. Bár Penrose nem szorgalmazza a tudatos tervezést, mégis hangsúlyozza a világegyetem rendkívüli finomhangoltságát, amely szerinte nem magyarázható egyszerűen az ismert kozmológiai elméletekkel. Arra utal, hogy a világegyetem szigorúan szabályozott kezdeti feltételei – mint például az entrópia hihetetlenül alacsony értéke a Big Bang során – olyan fokú precizitást igényeltek, amelyet a jelenlegi elméletek nem indokolnak meg. Ez magában foglalja azt a feltételezést, hogy a fizika jelenleg ismert törvényei valószínűleg csak egy nagyobb és mélyebb rendszer részei, amelyek még nem kerültek a látómezőnkbe.

VI. Kínált-e valamiféle megoldást a saját maga által felvetett problémára?

Penrose filozófiai és spekulatívabb megközelítéseit legjobban talán a „Conformal Cyclic Cosmology” elmélete tükrözi. Ezzel megpróbál új értelmezést adni a világegyetem ciklikusságának, ám nem egyszerűen örök körforgást képzel el, hanem azt feltételezi, hogy az univerzum különböző ciklusai egy közös, konformális geometriai struktúrán keresztül kapcsolódnak össze. Ez egyfajta „időn kívüli” szerkezetet sugall, amely szerint az egyik univerzális ciklus végének szimmetriája (és extrém egyszerűsége) valamilyen módon átvezethet egy új ciklusba, ahol az entrópia újra elindulhat a legalacsonyabb szintről. Ezek az elméletek nemcsak azt mutatják, hogy Penrose szkeptikus a hagyományos modellekkel szemben, hanem azt is, hogy egy mélyebb, a geometriai és fizikai törvényeket egyesítő alapelvet keresett. Írásaiban és előadásaiban időnként arra utalt, hogy a világmindenség kezdeti specialitása talán nem véletlen műve, hanem egy olyan, egyelőre ismeretlen alapvető szervezőelv megnyilvánulása, amelyet még nem értünk teljesen. Penrose tehát nyitott volt a „valami több” gondolatára – arra, hogy a világunkat irányító törvények és struktúrák mélyebb rejtélyek hordozói, amelyek új nézőpontokat és forradalmi változtatásokat igényelnek a tudományban.


Eredeti forrás és három kapcsolódó hivatkozás:

Roger Penrose – Before the Big Bang – (http://epaper.kek.jp/e06/PAPERS/THESPA01.PDF)

Roger Penrose – The Emperor’s New Mind: Concerning Computers, Minds, and the Laws of Physics – (https://www.penguinrandomhouse.com/books/130263/the-emperors-new-mind-by-roger-penrose/)

Roger Penrose – Cycles of Time: An Extraordinary New View of the Universe – (https://www.penguinrandomhouse.com/books/130265/cycles-of-time-by-roger-penrose/)

Roger Penrose – Fashion, Faith, and Fantasy in the New Physics of the Universe – (https://www.penguinrandomhouse.com/books/130266/fashion-faith-and-fantasy-in-the-new-physics-of-the-universe-by-roger-penrose/)

  • Mit gondolsz, mi másra alkalmazható még a Penrose-szám koncepciója az univerzumon kívül?
  • Ha te lennél Penrose, mivel próbálnád megmagyarázni a világegyetem ilyen finom hangoltságát?
  • Kivel szeretnéd megvitatni Penrose elméleteit, és miért épp vele?


Legfrissebb posztok

MA 18:17

Az univerzum tényleg sötét energia nélkül száguld egyre gyorsabban?

💫 Miért tágul egyre gyorsabban az univerzum? Ez még mindig a fizika egyik legnagyobb rejtélye...

MA 18:01

Az Ethereum sorsa a zéró‑tudású bizonyítékokon áll vagy bukik

Az utóbbi időszakban az Ethereum hatalmas áttöréseket ért el a zéró‑tudású bizonyítékok (zero-knowledge proofs) területén, amelyekre a fejlesztők a hálózat középtávú fejlesztési tervének alappilléreiként tekintenek...

MA 17:33

Az új kávéáttörés hatékonyabb a diabétesz elleni gyógyszereknél

☕ Érdemes megvizsgálni, hogy a pörkölt kávé nem csupán az ébredésben segít: kutatók új, eddig ismeretlen vegyületeket azonosítottak benne, amelyek rendkívül hatékonyan gátolják a szénhidrátok vércukorra gyakorolt hatását...

MA 17:18

Az amerikai ritkaföldfém-álom szertefoszlik: Grönlandon esélytelen a kitermelés

🌎 Ebből következően érdemes megérteni, hogy Grönlandon mintegy 1,5 millió tonna ritkaföldfém rejtőzik a kőzetben, amelyekre a csúcstechnológiai ipar éhezik, mégis szinte lehetetlen hozzájuk férni...

MA 16:50

Az agyhártyagyulladás új hulláma: veszélyben a tinédzserek?

💉 A baktérium okozta agyhártyagyulladás esetei az Egyesült Államokban aggasztó ütemben emelkednek, miközben a tinédzserek oltási hajlandósága csökken...

MA 16:33

Eleged van az iPhone folyékony üveg kinézetéből? Így változtasd meg

Az Apple novemberben elérhetővé tett egy frissítést, amellyel végre testre szabhatóvá váltak az úgynevezett folyékony üveg (Liquid Glass) vizuális elemek az iPhone-on...

MA 16:18

A CES 2026 öt legizgalmasabb tévéje, mindet kipróbálnám

📺 A 2026-os CES ismét lélegzetelállító újdonságokat hozott a tévévilágban. Igazi sztár lett az RGB mini-LED technológia – ahogy a különböző gyártók hívják: RGB mini-LED, Micro RGB vagy RGB mini...

MA 15:51

Az alattomos szívroham jelei – mit tegyél azonnal?

Érdemes megérteni, hogy a szívroham nemcsak az idősebbeket vagy a szívproblémásokat érintheti, hanem bárkit, bármilyen életkorban...

MA 14:49

Jön a személyi az appboltokhoz? Politikusok szigorítanának

Az appboltok mára kapuként működnek: innen telepítesz mindent a telefonodra, de hamarosan még egy akadályba ütközhetsz...

MA 14:35

A 6 kötelező lépés a telefon gyári visszaállítása előtt

📱 Akár eladás előtt, akár csak szükségből időnként gyári visszaállítást végzel a telefonodon, érdemes pár előzetes lépést megtenni, hogy később ne érjen kellemetlen meglepetés...

MA 13:50

A Google Maps hangos navigációja: tényleg megbízható, vagy csak idegesítő?

Érdemes belátni, hogy manapság mennyire számítunk a navigációs alkalmazásokra, különösen autózás közben...

MA 13:34

Az örök Finke-folyó: 400 millió éve dacol az idővel

💧 Érdemes megérteni, hogy a folyók sem örökéletűek: életciklusuk van, akárcsak a hegyeknek vagy más természeti képződményeknek...

MA 13:03

Az új MI-alapú közösségi app rendet tesz, vagy káoszt szül?

Egyre többen érzik úgy, hogy a mai közösségi oldalak inkább rombolják, mint építik a társas kapcsolatokat: a tartalmat algoritmusok uralják, ismeretlen emberek videói lepik el a hírfolyamot, személyesség és jelentés helyett csak lájkvadász, időrabló zaj marad...

MA 12:49

A Tennessee-i hatóságok keményen fellépnek az illegális sportfogadás ellen

Tennessee állam hatóságai felszólították a Kalshit, a Polymarketet és a Crypto...

MA 12:17

Az óriási kozmikus szendvics: így születnek a bolygók a Hubble szerint

🥪 Egy különös, szendvicsre emlékeztető objektum minden korábbinál izgalmasabb bepillantást nyújt abba, hogyan formálódnak a bolygók...

MA 11:49

Az űr tovább telik: újabb Starlink-műholdak lepik el az eget

🛰 A SpaceX zöld utat kapott az amerikai hírközlési hatóságtól, hogy további 7 500 Starlink Gen 2 műholdat indíthasson, így összesen már 15 000 ilyen eszközt küldhet fel az űrbe...

MA 11:33

Az aranybogyó új korszaka: CRISPR teremti a szupergyümölcsöt

Az aranybogyó, vagy más néven goldenberry, régóta csábítja a fogyasztókat különleges ízével és magas tápértékével, de eddig igazi rémálom volt nagyüzemi méretekben termeszteni...

MA 11:03

A jó szellőzés tényleg megállítja az influenzát?

😷 Érdekes megfigyelés: amikor influenzás betegeket egészségesekkel zártak össze egy szobába, senki sem betegedett meg...

MA 10:57

Az X algoritmusa hamarosan mindenki kezébe kerül

🚀 Elon Musk bejelentette, hogy az X (korábban Twitter) új ajánlórendszerének algoritmusa – beleértve minden kódot, amely meghatározza, hogy mely organikus és hirdetési bejegyzéseket javasolja a platform a felhasználóknak – bárki számára elérhetővé válik a jövő héten...