
Genom instabilitás és betegségkockázat
Minden alkalommal, amikor egy sejt osztódik, a DNS-e sérülésveszélynek van kitéve. Az osztódás befejezéséhez a sejtnek le kell másolnia teljes genetikai kódját – amely milliárdnyi betűből áll – ami alkalmanként hibákhoz vezethet. De nem csak a sejtosztódás jelent veszélyt. Az idő múlásával a napsugárzásnak, alkoholnak és cigarettafüstnek való kitettség szintén károsíthatja a DNS-t, növelve a rák és más betegségek kockázatát.
Szerencsére a sejteknek beépített javítórendszereik vannak, amelyek ellensúlyozzák ezt a károsodást. Ez a folyamat, amelyet DNS-károsodási válasznak (DDR) neveznek, olyan specifikus jelátviteli útvonalakat aktivál, amelyek észlelik és kijavítják a hibákat. Ezek a mechanizmusok segítenek fenntartani a genetikai stabilitást és biztosítani a sejt túlélését.
Új megközelítés a DNS-károsodási válaszról
A bajorországi Julius-Maximilians-Universität Würzburg (JMU) tudóscsoportja most közelebbről megvizsgált egy ilyen jelátviteli útvonalat. A csoport azonosított egy új DNS-károsodási válasz mechanizmust, amelyet egy RNS átirat közvetít. Eredményeik segítenek szélesíteni a DNS-károsodási válaszról alkotott fogalmi képet és szorosabban összekapcsolni azt az RNS-metabolizmussal.
RNS átiratok mint kulcsfontosságú szabályozók
“Kutatásunkban az úgynevezett hosszú nem-kódoló RNS átiratokra összpontosítottunk. Korábbi adatok arra utalnak, hogy egyes ilyen átiratok a genomstabilitás szabályozóiként működnek,” magyarázza Kaspar Burger a munka hátterét. A tanulmány a sejtmagban feldúsuló abundáns átirat 1-re – más néven NEAT1-re – összpontosított, amely nagy koncentrációban található meg számos tumorsejtnél. A NEAT1-ről azt is tudni, hogy reagál a DNS-károsodásra és a sejtes stresszre. Azonban pontos szerepe a DNS-károsodási válaszban korábban tisztázatlan volt.
“Hipotézisünk szerint az RNS-metabolizmus a NEAT1-et bevonja a DNS-károsodási válaszba a genom stabilitásának biztosítása érdekében,” mondja Burger. A hipotézis tesztelésére a kutatócsoport kísérletileg vizsgálta, hogyan reagál a NEAT1 a genom súlyos károsodására – az úgynevezett DNS kettős szálú törésekre – emberi csontráksejtekben. Az eredmény: “Kimutatni tudtuk, hogy a DNS kettős szálú törések mind a NEAT1 átiratok számát, mind a NEAT1-en lévő N6-metiladeninekészletek mennyiségét növelik,” mondja a tudós.
RNS-módosítás és rákkutatási összefüggések
A tudósok nem régóta foglalkoznak az RNS átiraton található metiladeninekészletekkel. Ezek az epitranszkriptomika területéhez tartoznak – a biológia azon területéhez, amely azzal a kérdéssel foglalkozik, hogy az RNS-módosítások hogyan vesznek részt a génexpresszió szabályozásában. A metilcsoportok kulcsszerepet játszanak ebben. Ismert például, hogy az RNS-módosítások gyakran rossz helyre kerülnek a ráksejtekben.
A NEAT1 meglepő szerepe a DNS-javításban
A Kaspar Burger és csapata által végzett kísérletek megmutatják, hogy a DNS kettős szálú törések gyakori előfordulása a NEAT1 túlzott metilációját okozza, ami a NEAT1 másodlagos szerkezetének változásaihoz vezet. Ennek eredményeként a magasan metilált NEAT1 felhalmozódik ezen sérülések némelyikénél, hogy elősegítse a törött DNS felismerését. Ezzel szemben a NEAT1-szintek kísérletileg indukált elnyomása késleltette a DNS-károsodási választ, ami a DNS-károsodás növekedéséhez vezetett.
A NEAT1 önmagában nem javítja a DNS-károsodást. Azonban, ahogy a würzburgi csapat felfedezte, lehetővé teszi egy RNS-kötő DNS-javító faktor kontrollált felszabadulását és aktiválását. Így a sejt rendkívül hatékonyan ismerheti fel és javíthatja a DNS-károsodást.
Új lehetőségek a rákterápiában
A tudósok szerint a NEAT1 metilációjának szerepéről szerzett ismeretek a DNS-károsodás felismerésében és javításában új terápiás lehetőségeket nyithatnak a magas NEAT1-expresszióval rendelkező tumorok kezelésében. Először azonban tisztázni kell, hogy ezek az egyszerű sejtrendszerekben kapott eredmények átvihetők-e összetett tumormodellekre is.