Az Univerzum titkos szennyeskosara: az axionok nyomában

Az Univerzum titkos szennyeskosara: az axionok nyomában
Az Univerzumban valami nagyon nincs rendben. Hiába mérjük galaxisok vagy galaxishalmazok tömegét, vagy vizsgáljuk a kozmikus mikrohullámú háttérsugárzás részleteit, mindig ugyanarra jutunk: több anyagnak kell lennie, mint amennyit látni tudunk. Különféle módszereink vannak: egyesek csak a fényt kibocsátó anyagra támaszkodnak, mások viszont az összes anyagot, beleértve a láthatatlant is, számításba veszik. Ha például egy átlagos galaxist mérünk végig, a legtöbb fényt a középpontban találjuk. De ha a forgási sebességéből becsüljük meg a teljes tömeget, mindig sokkal nagyobb értéket kapunk. A galaxisokból álló halmazokban is több anyag szükséges, mint amit a fény alapján gondolnánk, ráadásul a kétféle anyag valahogy nem ugyanott helyezkedik el. A gravitációs lencsehatás is azt mutatja, hogy a látható anyag csupán töredéke a valóságnak. A mikrohullámú háttérsugárzás apró egyenetlenségei az egész Univerzum múltjáról árulkodnak: látszik, hogy volt valami láthatatlan komponens, amely uralta a kezdeti korszakot. Ha a kozmikus szövet nagyléptékű szerkezetét nézzük, a láthatatlan anyag diktálja a tempót. Egyszerűen nélküle nem tudtak volna olyan gyorsan kialakulni galaxisok, mint a Tejútrendszer. Ez mind alátámasztja: sokkal több anyag van, mint amit közvetlenül látunk, és ez már nem lehet csak sötét, de „rendes” anyag.

Miért buktak el a WIMP-ek?

Az 1970-es években Vera Rubin munkája világossá tette: sötét anyagra van szükség. Az asztrofizikusok számos elmélettel próbálkoztak, sőt, volt, aki szerint maga a gravitáció értelmezése is hibás. Ám minden elmélet, amely a gravitációt módosítja – így a MOND is –, végül megbukott egy-egy megfigyelésen, sőt, még ezek is sötét anyagot feltételeznek, csak kevesebbet.

A sötét anyag kutatásában sokáig a WIMP, azaz a gyengén kölcsönható nagy tömegű részecske volt a favorit. Ezek létezése több részecskefizikai modellben is előfordul, a Standard Modell kiterjesztéseiben gyakran javasolták őket. Az elképzelés szerint elárasztják a Világegyetemet, de rendkívül ritkán lépnek kölcsönhatásba, főként csak a gyenge kölcsönhatás révén lehet őket elcsípni – legalábbis elméletileg.

Világszerte izgalmas nevű kísérletek – CRESST, SNOLAB, XENON – indultak, hogy elkapják a WIMP-et. Minden évben pontosították, hogy ezek a részecskék hol nem lehetnek: pontosan mennyi tömeg és milyen kölcsönhatás már kizárt. A lehetséges jellemzőik tartománya ma már igen beszűkült.

Újabb ötletekre volt szükség – szerencsére a részecskefizika „padlásán” voltak még alternatívák, például az axion.

Mi fán terem az axion?

Az axion ötlete a hetvenes évek végén Frank Wilczek fejéből pattant ki – állítólag éppen mosóport vásárolt, a neve pedig tetszett neki egy részecskéhez. Az elméleti részecskefizikusok egy másik problémára kerestek magyarázatot: a kvantum-kromodinamikában egy zavaró szimmetria jelentkezett, aminek nem volt igazi oka – ez zavarta Peccei-t és Quinn-t. Ők 1977-ben egy új, univerzális mező bevezetésével oldották meg ezt a problémát: így született a gondolat, hogy léteznie kell egy új részecskének, az axionnak.

Ekkoriban még nem a sötét anyag megoldására szánták. De hamar rájöttek: az Univerzum korai időszakában az axionok „tízmilliószámra” keletkezhettek, ráadásul alig lépnek kölcsönhatásba a szokványos anyaggal – vagyis ideális sötét anyag jelöltek.

A WIMP akkor még kézenfekvőbbnek tűnt, mivel természetes módon pont annyi keletkezhetett belőle, amennyire az Univerzum sötét anyag igényéhez szükség volt. Épp ezért az axion háttérbe szorult, de néhány kutató tovább foglalkozott vele. Trükkös kísérleteket álmodtak meg, például hatalmas mágneseket használtak, mert extrém mágneses térben az axionok spontán fotonokká alakulhatnak.

Eddig még nem észlelték az axiont, de ahogy a WIMP-ek egyre esélytelenebbé válnak, az axion folyamatosan előrébb kerül a ranglistán.

Az axion és a hullám-Univerzum

Az axionok annyira könnyűek, hogy még a legkönnyebb ismert részecske, a neutrínó (max. 0,086 eV) mellett is eltörpülhetnek: lehetnek akár egybilliómod eV tömegűek, sőt, ennél is könnyebbek. Az axion az ultrakönnyű sötét anyag részecskék széles családjába tartozik, amelyek akár 10^-24 eV tömegűek is lehetnek – ez milliárdszor könnyebb, mint bármelyik WIMP vagy Standard Modell részecske.

Az axionok annyira könnyűek, hogy nem is igazán „részecskeként” kell rájuk gondolni. De Broglie-hullámhosszuk olyan nagy lehet, hogy akár néhány méteres, csillagnyi vagy teljes galaxisnyi tartományokat is „betölthet” egyetlen axion kvantumhulláma. Egy egész axion „óceán” keletkezik, amiben már nem értelmezhetőek az egyedi részecskék.

Mivel boszonok, hullámtulajdonságaikat szinkronizálni tudják, és egyfajta Bose–Einstein kondenzátumot alkothatnak – ilyen esetben akár úgy is viselkedhetnek, mintha egy gigászi „szuperrészecskét” hoznának létre. Így jöhetnek létre axion-csillagok, amelyek lehetnek néhány ezer kilométer átmérőjű kis gömbök, de akár galaxis-méretű óriások is.

A hagyományos „hideg sötét anyag” túl jól működik: túl apró, túl sűrű magvakat jelez a számításokban, amit a megfigyelések nem támasztanak alá. Az axion viszont eloszlásával „elsimítja” ezeket a magokat, megelőzve a túl sűrű galaxis-magok kialakulását.


Axionok: hogyan bukkanhatunk rájuk?

Az axion egyik különös képessége, hogy erős mágneses térben fotonokká alakulhat. Ezért érdemes például neutroncsillagokat vagy a Nap koronáját vizsgálni – ezekből származhatna extra sugárzás, ha axionok léteznek. Az axion-csillag, vagyis „sötét csillag” pedig láthatatlan marad, míg spontán el nem kezd robbanni: ilyenkor az axionjai kaszkádban alakulnak át fotonná.

Távoli galaxisok fénye is utalhat axionokra: sűrű „rajaik” körbevehetik a galaxist, fotonjaik hozzáadódhatnak a galaxis fényéhez, ezt például a James Webb űrtávcső is érzékelheti.

Eddig egy szemernyi „kemény” bizonyíték sem bukkant fel, az axionok így inkább csak lehetőségek maradnak – de nem érdemes még feladni a keresést, hiszen rengeteg lehetséges axionjelölt létezhet.

Valami biztosan furcsa az Univerzumban, ezt tudjuk. A sötét anyag elmélete ugyan nem túl elegáns, de jelenleg minden tapasztalathoz ez illeszkedik. Az identitását ugyan nem fejtettük még meg, de az alternatív ötletek sem vezettek eredményre. Az axion viszont még versenyben van. Ki tudja: talán egy axionokkal és láthatatlan csillagokkal teli Univerzumban élünk?

2025, adminboss, arstechnica.com alapján

  • Mit gondolsz, etikus-e olyan elméleteket keresni, amiket talán sosem tudunk igazolni?
  • Te miben bízol jobban: a megfigyelésekben vagy az elméletekben?
  • Ha te lennél kutató, hogyan döntened el, hogy mikor kell feladni egy ötletet?




Legfrissebb posztok